
IJDCST @Dec Issue- V-1, I-8, SW-17
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

47 www.ijdcst.com

Merging and indexing mechanisms for speedy processing in

Flat File handling

1Kommunuri.Ravi Kumar,
 2

Sravanthi.Kasturi,
 3

RavindraPrasad.Gundala

1Sr.Asst.Professor,CSE dept, Mandava Engineering College,Jaggayya Pet

2
Asst.Professor,CSE dept, Mandava Engineering College,Jaggayya Pet

3
Asst.Professor,CSE dept, Mandava Engineering College,Jaggayya Pet

Abstract: Processing of the data in fastest manner

is essential part of data warehousing environment.

In the data warehousing process Extraction

transformation and loading plays a vital role.

The paper describes the usage of FLAT file source so as to

speed up the ETL process. The benefit of the

methodology that we are going to provide will

improves the efficiency of data ware housing

environment in case of storage and

processing time. The IT companies are

looking for better performance for the

data warehousing processing as the DWH

environment holds bulk amount of the data, we

concentrate on FLAT file source in ETL processing

because it is the second highest source used by the

DWH environment.

Index Terms: Flat F i l e s , Etl, Merging, Indexing,

DWH.

I. INTRODUCTION

Industry has huge amount of operational data

Knowledge worker wants to turn this data into

useful information. This information is used

by them to support strategic decision making.

It is a platform for consolidated historical data for

analysis. It stores data of good quality so

that knowledge worker can make correct

decisions. According to BARRY DEVLIN single,

complete and consistent store of data obtained

from a variety of different sources made available

to end users in what they can understand and use

in a business context. Data should be

integrated across the enterprise. The source

data is taken from legacy and kind of the data is

numerical in most of the cases. External data

may be included, often purchased from third-

party sources. Data are moved from source to

target data bases. AETL processing is very costly,

time consuming part of data warehousing.

Some sample ETL tools are Teradata Warehouse

Builder from Terawatt, SAS System from SAS

Institute, Power Mart/Power Center from

Informatics, and Sagent Solution from Sagest

Software [1].

II. IMPORTANCE OF FLAT FILE IN ETL

Improvement of data warehousing process is

possible through FLAT files. Compared with

data base source FLAT files are better in case of

processing. The Extraction time for 2000

records using flat file takes 16.37ms where

data base file requires 25ms. The Flat File needs

IJDCST @Dec Issue- V-1, I-8, SW-17
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

48 www.ijdcst.com

less storage space on disk compared to data

base table. Data extraction using direct data base

file requires more time compared to that of the

flat file data. Improvement during

extraction process is achieved by converting the

data base table into flat file and extract
[1]

.

DBMS heterogeneity problem is handled with

flat file usage. Here heterogeneity refers to

various formats of the data. Reduction of

overhead and programming efforts possible

through flat file processing [2]. In addition to flat

files usage of indices will greatly improve the

performance. High through-put experiments such

as micro array monitor multiple objects at the

same time. With out Indexing, the brute-force

method for nested file scanning took 81.59s where

as with indices it took 20.89 seconds. Use of

Indices on Flat Files Can Improves System’s

performance and functionality
[2]

Input Flat File

data must be transformed into a uniform format

which could be more suitable for analytical

purposes. The Advantage of a Flat File is that it

takes up less space than a structured file. Flat

File Management such as

updation/Deletion/Insertion is easy when

transform into structured format. Flat File is One of

the semi structured plain text file to store it in dwh

flat file doesn’t store directly in the dwh
[3]

The

index should able to operate with other indexes to

filtering out the records before accessing original

data. Clustering index is good for range based

queries but requires sorted data. If the set of

key-value pairs is fixed and known ahead of time,

hash based indexing is best for equality

selections. Three possible queries are Full table

Scan, exact match and statistical type query.

Cluster index is better for full table

scanning. Hash based indexing is good for exact

match query. Bitmap index is good for

executing statistical query execution. Bitmap

requires less space if data have less cardinality, it

can also be compressible if once created.
[5]

The following diagram gives the usage

percentages of various source data in the ETL

processing.

Figure 1: Source usage % in ETL processing.

• Relational Usage—89%

• Flat Files Usage—81%

• Mainframe/Legacy—65%

• Packaged Applications—39%

• XML & WEB—15%

Flat files are used not only as data storage tools

in DB, but also as data transfer tools to remote

servers. A flat file can be a plain text file or a

binary file. There are usually no structural

relationships between the records. The Most

Commonly used kind of OLTP in DWH is Flat

file (The second highest percentage usage). So

better handling of the flat files in DWH will result

best processing of data
.[6]

III. PROPOSED APPROACH

IJDCST @Dec Issue- V-1, I-8, SW-17
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

49 www.ijdcst.com

Storing huge number of small files results in

high memory usage and unacceptable access

cost. The Basic idea is to merge small files

into larger ones to reduce file number, and to

build index or use key-value pair for each original

file. A File merging method among files

belonging to is proposed to improve the

storing efficiency of small files, and a local

index file is established for each merged file [7].

A two- level pre-fetching mechanism,

which comprises local index file pre-fetching and

correlated file pre-fetching, is utilized to

improve the accessing efficiency of the small

files. It mainly consists of mapping the required

file to a merged file, reading a local index file,

splitting a target block and pre-fetching. We

can expect better performance by combining

small files into larger ones and building hash

index for each small file. We can create multiple

threads to read the flat file. We can use

Hash Partitioning. We can also use Key Range

Partitioning. Loading the flat file into a temp table.

And then we can create indexes on the required

columns.[8]. The merging mechanism of Flat files

can be handled by the following convention.

Figure 2: Merging Task Comparison.

 So the final result shows that merging of flat

files or any other source directly will require 6.16

seconds where as in case of Merging with

intermediate files requires 13.28. Creating and

merging intermediate SAS files vs. Merging

flat files directly File Name Type Position Length

Driver CUSTNUM Numeric 1 1

ADDRESS Char 3 6

Support1 KEY1 Numeric 1 1

INCOME Numeric 3 3

Support2 KEY2 Numeric 1 1

SALES Numeric 3 3

The actual data for this example is:

Driver Support1 Support2

Obs#(CUSTNUM,ADDRESS)

(KEY1,INCOME) (KEY2,SALES)

1 1, MAIN 2,100 1, 20

2 2, FIRST 3,60 3,40

3 5, SECOND 4,140 4,100

4 --- 5,240 ---

Example Code

The following is the actual code that is

needed to merge these files.

** Merging flat files: SUGI presentation

1 data final(keep=CUSTNUM ADDRESS

INCOME SALES);

2 retain DONE1 DONE2 0 KEY1 KEY2

ADVANCE;

/* input driver file information */

3 infile 'driver.txt';

IJDCST @Dec Issue- V-1, I-8, SW-17
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

50 www.ijdcst.com

4 input @1 CUSTNUM 1.

5 @3 ADDRESS $6.;

/* input each supporting file information */

/* income file first */

6 if not DONE1 then do;

7 ADVANCE=0;

8 infile 'income.txt' end=LAST1;

9 do until (KEY1>=CUSTNUM or

LAST1);

10 if ADVANCE then input;

11 input @1 KEY1 1. @@;

12 ADVANCE=1;

13 end;

14 if KEY1=CUSTNUM then

15 input @3 INCOME 3.;

16 if LAST1 then if KEY1<=CUSTNUM

then DONE1=1;

17 end;

/* sales file next */

18 if not DONE2 then do;

SUGI 27 Coders' Corner2

19 ADVANCE=0;

20 infile 'sales.txt' end=LAST2;

21 do until (KEY2>=CUSTNUM or

LAST2);

22 if ADVANCE then input;

23 input @1 KEY2 1. @@;

24 ADVANCE=1;

25 end;

26 if KEY2=CUSTNUM then

27 input @3 SALES 3.;

28 if LAST2 then if KEY2<=CUSTNUM

then DONE2=1;

29 end;

30 run;

Another requirement to speed up processing of the

Flat files is process of Indexing.

Figure 3: Time required for Each Indexing.

To observe the efficiency of each indexing the

following diagram will shows the

experimental results

IJDCST @Dec Issue- V-1, I-8, SW-17
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

51 www.ijdcst.com

Figure 4: Bitmap and B-Tree Indexing Time

Requirements.

As shown in the figure 4 the experimental

results show efficient process in reading big amount

of data in real time application with relative data

efficiency in accessing services, that includes

sufficient process generation in construction of ETL

and handling those data sets with their

requirement specification in real time application

process. In this application we will include technical

aspects of relevant task management operations in

real time data handling applications for progressive

environment specifications. These results are

accessed modularity with event management

operations. A File merging method among files

belonging to is proposed to improve the

storing efficiency of small files, and a local

index file is established for each merged file [7].

A two- level pre-fetching mechanism,

which comprises local index file pre-fetching and

correlated file pre-fetching, is utilized to

improve the accessing efficiency of the small

files. It mainly consists of mapping the required

file to a merged file, reading a local index file,

splitting a target block and pre-fetching. We

can expect better performance by combining

small files into larger ones and building hash

index for each small file. Process of developing

these applications is as follows:

Input: Datasets related to technical issues

of data representation

Output: Skyline Computational results of

each data set.

Step1: Import datasets from i=1…………..n.

Step 2: Data aggregative operations in each

data set using Hash function generation

process.

Step 3: Perform Early pruning with noise

data

Step 4: Perform Late Pruning with noise data.

Step 5: Updated results can be stored in

repository using ETL techniques.

Step 5: Experimental result are stored in

semantic data representation.

Algorithm 1: Skyline computation results using

ETL operations.

By using above algorithm we perform and calculate

efficient processing applications with including

processing of data with sufficient experimental

results for analyzing and modifying data restrictions

with procedure oriented processing real time data

applications.

IV. CONCLUSION

IJDCST @Dec Issue- V-1, I-8, SW-17
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

52 www.ijdcst.com

The paper describes the usage of FLAT file source

so as to speed up the ETL process. The benefit of

the methodology that we are going to provide

will improves the efficiency of data ware housing

environment in case of storage and

processing time. The IT companies are

looking for better performance for the

data warehousing processing as the DWH

environment holds bulk amount of the data, we

concentrate on FLAT file source in ETL processing

because it is the second highest source used by the

DWH environment. In this application we will

include technical aspects of relevant task

management operations in real time data handling

applications for progressive environment

specifications. These results are accessed modularity

with event management operations.

V. REFERENCES

[1].Satkaur , Research scholar, S.K.I.E.T.

,Kurukshetra, Haryana, International Journal of

Advanced Research in computer Science and

Software Engineering , Volume 3, Issue 5, May

2013 ISSN:

2277 128X .

[2].JensDittrichJorgeArnulfo,Quian´eRuizInformati

on Systems Group Saarland University,

Efficient Big Data Processing in Hadoop Map

Reduce, Proceedings of the VLDB Endowment,

Vol. 5, No. 12Copyright 2012 VLDB.

[3].Lizhe Wang, School of Computer, China

University of Geosciences, G-Hadoop: Map

Reduce across distributed data centers for

data-intensive computing, Future Generation

Computer Systems, The international

journal of grid computing and esciences 2012

Elsevier.

[4]Bo Dong, Department of Computer Science

and Technology, Xi'an Jiaotong University, Xi'an,

China, A Novel Approach to Improving the

Efficiency of Storing and Accessing Small Files on

Hadoop: a Case Study by PowerPoint Files,

2010 IEEE International Conference on Services

Computing.

[5].By Muhammad Inayat Ullah, Gomal

University, Transformation of Flat File into Data

Warehouse, Global Journal of Computer Science

and Technology Volume 11 Issue 13 Version

1.0 August 2011.

[6].Improved Extraction mechanism in ETL process

for building of a Data Warehouse, MPSTME,

SVKM’s NMIMS, Mumbai .

[7].Ranjit Singh, Research Scholar,

University College of Engineering (UCoE),

Punjabi University, A Descriptive

Classification of Causes of Data Quality

Problems in Data Warehousing, IJCSI

International Journal of Computer Science Issues,

Vol. 7, Issue 3, No 2, May 2010 41ISSN

(Online): 1694- 0784.

[8].Bitmap Index as Effective Indexing for

Low Cardinality Column in Data

Warehouse -International Journal of Computer

Applications (0975 – 8887) Volume 68– No.24,

April 2013.

